
Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 25

UNIT- 2
CONSTRAINTS & NORMALIZATION

2.1 BASIC CONCEPTS
1. Entity: An entity can be a real-world object, either animate or inanimate, that can be easily
identifiable. Or Any real-world object can be represented as an entity about which data can be
stored in a database For example, in a school database, students, teachers, classes, and courses
offered can be considered as entities. All these entities have some attributes or properties that
give them their identity.
2. An entity set is a collection of similar types of entities. An entity set may contain entities
with attribute sharing similar values. For example, a Students set may contain all the students
of a school; likewise a Teachers set may contain all the teachers of a school from all faculties.
Entity sets need not be disjoint.
3. Attributes: Entities are represented by means of their properties, called attributes. All
attributes have values. For example, a student entity may have name, class, and age as
attributes. attributes gives identity to entity.
4. Domain: or range of values that can be assigned to attributes. For example, a student's
name cannot be a numeric value. It has to be alphabetic. A student's age cannot be negative,
etc. Attributes are the properties of entities. Attributes are represented by means of ellipses.
Every ellipse represents one attribute and is directly connected to its entity (rectangle).
5. Tuple: A single row of a table, which contains a single record for that relation is called a
tuple.

2.2 CODD's RULES
Dr Edgar F. Codd, after his extensive research on the Relational Model of database systems,
suggested twelve rules of his own, which according to him, a database must obey in order to
be regarded as a true relational database. These rules can be applied on any database system
that manages stored data using only its relational capabilities.
 Rule 1: Information Rule: The data stored in a database, may it be user data or metadata,
must be a value of some table cell. Everything in a database must be stored in a table format.
 Rule 2: Guaranteed Access Rule: Every single data element (value) is guaranteed to be
accessible logically with a combination of table-name, primary-key (row value), and attribute-
name (column value). No other means, such as pointers, can be used to access data.
 Rule 3: Systematic Treatment of NULL Values: The NULL values in a database must be given a
systematic and uniform treatment. This is a very important rule because a NULL can be
interpreted as one the following − data is missing, data is not known, or data is not applicable.
 Rule 4: Active Online Catalog: The structure description of the entire database must be stored
in an online catalog, known as data dictionary, which can be accessed by authorized users.
Users can use the same query language to access the catalog which they use to access the
database itself.
 Rule 5: Comprehensive Data Sub-Language Rule: A database can only be accessed using a
language having linear syntax that supports data definition, data manipulation, and

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 26

transaction management operations. This language can be used directly or by means of some
application. If the database allows access to data without any help of this language, then it is
considered as a violation.
 Rule 6: View Updating Rule: All the views of a database, which can theoretically be updated,
must also be updatable by the system.
 Rule 7: High-Level Insert, Update, and Delete Rule: A database must support high-level
insertion, updation, and deletion. This must not be limited to a single row, that is, it must also
support union, intersection and minus operations to yield sets of data records.
 Rule 8: Physical Data Independence: The data stored in a database must be independent of
the applications that access the database. Any change in the physical structure of a database
must not have any impact on how the data is being accessed by external applications.
 Rule 9: Logical Data Independence: The logical data in a database must be independent of its
user’s view (application). Any change in logical data must not affect the applications using it.
For example, if two tables are merged or one is split into two different tables, there should be
no impact or change on the user application. This is one of the most difficult rule to apply.
 Rule 10: Integrity Independence: A database must be independent of the application that uses
it. All its integrity constraints can be independently modified without the need of any change
in the application. This rule makes a database independent of the front-end application and its
interface.
 Rule 11: Distribution Independence: The end-user must not be able to see that the data is
distributed over various locations. Users should always get the impression that the data is
located at one site only. This rule has been regarded as the foundation of distributed database
systems.
 Rule 12: Non-Subversion Rule: If a system has an interface that provides access to low-level
records, then the interface must not be able to subvert the system and bypass security and
integrity constraints.

2.3 INTEGRITY CONSTRAINTS
Integrity constraints are a set of rules. It is used to maintain the quality of information. It
ensure that the data insertion, updating, and other processes have to be performed in such a
way that data integrity is not affected. Thus, is used to guard against accidental damage to the
database. Various types of Integrity Constraint are

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 27

1. Domain constraints: Domain constraints can be defined as the definition of a valid set of
values for an attribute. The data type of domain includes string, character, integer, time, date,
currency, etc. The value of the attribute must be available in the corresponding domain.
Attributes have specific values in real-world scenario. For example, age can only be a positive
integer. The same constraints have been tried to employ on the attributes of a relation. Every
attribute is bound to have a specific range of values. For example, age cannot be less than zero
and telephone numbers cannot contain a digit outside 0-9.
Example:

2. Entity integrity constraints: The entity integrity constraint states that primary key value
can't be null. This is because the primary key value is used to identify individual rows in
relation and if the primary key has a null value, then we can't identify those rows. A table can
contain a null value other than the primary key field.
Example:

3. Key constraints: Keys are the entity set that is used to identify an entity within its entity
set uniquely. An entity set can have multiple keys, but out of which one key will be the
primary key. A primary key can contain a unique and null value in the relational table.
Example:

4. Referential Integrity Constraints: A referential integrity constraint is specified between
two tables. In the Referential integrity constraints, if a foreign key in Table 1 refers to the
Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null or be
available in Table 2. So we can say Referential integrity constraints work on the concept of
Foreign Keys. A foreign key is a key attribute of a relation that can be referred in other

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 28

relation. Referential integrity constraint states that if a relation refers to a key attribute of a
different or same relation, then that key element must exist.
Example:

2.4 Enterprise Constraints: Enterprise constraints – sometimes referred to as semantic
constraints – are additional rules specified by users or database administrators and can be
based on multiple tables. Here are some examples.

 A class can have a maximum of 30 students.
 A teacher can teach a maximum of four classes per semester.

 An employee cannot take part in more than five projects.

 The salary of an employee cannot exceed the salary of the employee’s manager.

2.5 DATABASE SCHEMA
A database schema is the skeleton structure that represents the logical view of the entire
database. It defines how the data is organized and how the relations among them are
associated. It formulates all the constraints that are to be applied on the data.
A database schema defines its entities and the relationship among them. It contains a
descriptive detail of the database, which can be depicted by means of schema diagrams. It’s
the database designers who design the schema to help programmers understand the
database and make it useful.

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 29

Above is a simple example of a schema diagram. It shows three tables, along with their data
types, relationships between the tables, as well as their primary keys and foreign keys.

2.6 FUNCTIONAL DEPENDENCY
The functional dependency is a relationship that exists between two attributes. It typically
exists between the primary key and non-key attribute within a table.

X → Y

The left side of FD is known as a determinant, the right side of the production is known as a
dependent.
For example: Assume we have an employee table with attributes: Emp_Id, Emp_Name,
Emp_Address. Here Emp_Id attribute can uniquely identify the Emp_Name attribute of
employee table because if we know the Emp_Id, we can tell that employee name associated
with it. Functional dependency can be written as:

 Emp_Id → Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id.

2.6.1 Types of Functional dependency

Figure: Types of Functional Dependency

1. Trivial functional dependency: A Dependency is said to be Trivial if in any dependency A
-> B, B is a entity which is subset of entity set A. The dependencies like: A → A, B → B are also
trivial
Example: Consider a table with two columns Employee_Id and Employee_Name.

{Employee_id, Employee_Name} → Employee_Id

It is a trivial functional dependency as Employee_Id is a subset of {Employee_Id, Employee
_Name}. Also following are trivial dependencies too.

Employee_Id → Employee_Id and Employee_Name → Employee_Name

 2. Non-trivial functional dependency: A Dependency is said to be Non Trivial if in any
dependency A -> B, B is a entity which is not subset of entity set A. When A intersection B is
NULL, then A → B is called as complete non-trivial.
Example: 1. ID → Name, 2. Name → DOB

2.7 ANOMALIES: If a database design is not perfect, it may contain anomalies that is impurity,
which are like a bad dream for any database administrator. Managing a database with
anomalies is next to impossible.

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 30

 Update anomalies − If data items are scattered and are not linked to each other properly,
then it could lead to strange situations. For example, when we try to update one data item
having its copies scattered over several places, a few instances get updated properly while a
few others are left with old values. Such instances leave the database in an inconsistent state.
 Deletion anomalies − We tried to delete a record, but parts of it was left undeleted
because of unawareness, the data is also saved somewhere else.
 Insert anomalies − We tried to insert data in a record that does not exist at all.

2.8 RELATIONAL DECOMPOSITION:
Decomposition is the process of splitting the tables in two or more tables. When a relation in
the relational model is not in appropriate normal form then the decomposition of a relation is
required. In a database, it breaks the table into multiple tables. If the relation has no proper
decomposition, then it may lead to problems like loss of information. Decomposition is used
to eliminate some of the problems of bad design like anomalies, inconsistencies, and
redundancy.

2.8.1 Types of Decomposition

Figure: Types of Decomposition

1. Lossless Decomposition: If the information is not lost from the relation that is
decomposed, then the decomposition will be lossless. The lossless decomposition guarantees
that the join of relations will result in the same relation as it was decomposed. The relation is
said to be lossless decomposition if natural joins of all the decomposition give the original
relation.

Example: Table: Employee_Department

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME
22 Denim 28 Mumbai 827 Sales
33 Alina 25 Delhi 438 Marketing
46 Stephan 30 Bangalore 869 Finance
52 Katherine 36 Mumbai 575 Production
60 Jack 40 Noida 678 Testing

The above relation is decomposed into two relations Employee and Department

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 31

 Table: Employee Table: Department

EMP_ID EMP_NAME EMP_AGE EMP_CITY
22 Denim 28 Mumbai
33 Alina 25 Delhi
46 Stephan 30 Bangalore
52 Katherine 36 Mumbai
60 Jack 40 Noida

Now, when these two relations are joined on the common column "EMP_ID", then the
resultant relation will look like: Employee X Department (Joint of Both Tables)

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME
22 Denim 28 Mumbai 827 Sales
33 Alina 25 Delhi 438 Marketing
46 Stephan 30 Bangalore 869 Finance
52 Katherine 36 Mumbai 575 Production
60 Jack 40 Noida 678 Testing

Hence, the decomposition is Lossless join decomposition.

2. Dependency Preserving: It is an important constraint of the database. In the
dependency preservation, at least one decomposed table must satisfy every dependency. If a
relation R is decomposed into relation R1 and R2, then the dependencies of R either must be a
part of R1 or R2 or must be derivable from the combination of functional dependencies of R1
and R2. For example, suppose there is a relation R (A, B, C, D) with functional dependency set
(A->BC). The relational R is decomposed into R1(ABC) and R2(AD) which is dependency
preserving because FD A->BC is a part of relation R1(ABC).

2.9 MULTIVALUED DEPENDENCY:
Multivalued dependency occurs when two attributes in a table are independent of each other
but, both depend on a third attribute. A multivalued dependency consists of at least two
attributes that are dependent on a third attribute that's why it always requires at least three
attributes.
Example: Suppose there is a bike manufacturer company which produces two colors (white
and black) of each model every year.

BIKE_MODEL MANUF_YEAR COLOR
M2001 2008 Black
M3001 2013 White
M3001 2013 Black
M4006 2017 White
M4006 2017 Black

DEPT_ID EMP_ID DEPT_NAME
827 22 Sales
438 33 Marketing
869 46 Finance
575 52 Production
678 60 Testing

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 32

Here columns COLOR and MANUF_YEAR are dependent on BIKE_MODEL and independent of
each other. In this case, these two columns can be called as multivalued dependent on
BIKE_MODEL. The representation of these dependencies is shown below:

1. BIKE_MODEL → → MANUF_YEAR
2. BIKE_MODEL → → COLOR

So to remove this dependency the above table need to be decomposed in to two tables as
bellow.

BIKE_MODEL COLOR
M2001 Black
M3001 White
M3001 Black
M4006 White
M4006 Black

This can be read as "BIKE_MODEL multi determined MANUF_YEAR" and "BIKE_MODEL multi
determined COLOR".

2.10 JOIN DEPENDENCY
Join decomposition is a further generalization of Multivalued dependencies. If the join of R1
and R2 over C is equal to relation R, then we can say that a join dependency (JD) exists. Where
R1 and R2 are the decompositions R1(A, B, C) and R2(C, D) of a given relations R (A, B, C, D).
Alternatively, R1 and R2 are a lossless decomposition of R. A JD ⋈ {R1, R2,...,Rn} is said to hold
over a relation R if R1, R2,....., Rn is a lossless-join decomposition. The *(A, B, C, D), (C, D) will
be a JD of R if the join of join's attribute is equal to the relation R. Here, *(R1, R2, R3) is used to
indicate that relation R1, R2, R3 and so on are a JD of R.

2.11 NORMALIZATION
Normalization is the process of organizing the data in the database. It is used to minimize the
redundancy from a relation or set of relations. It is also used to eliminate the undesirable
characteristics like Insertion, Update and Deletion Anomalies. Normalization divides the
larger table into the smaller table and links them using relationship. The normal form is used
to reduce redundancy from the database table. So we can say It is a method to remove all
these anomalies and bring the database to a consistent state.

Types of Normal Forms: There are the six types of normal forms

BIKE_MODEL MANUF_YEAR
M2001 2008
 M3001 2013
M3001 2013
M4006 2017
M4006 2017

Normalization
Form

2 NF 1 NF 3 NF BCNF 4 NF 5 NF

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 33

2. First Normal Form (1NF): A relation will be 1NF if it contains an atomic value. It states
that an attribute of a table cannot hold multiple values. It must hold only single-valued
attribute. First normal form disallows the multi-valued attribute, composite attribute, and
their combinations. First normal form also disallows the empty field for any row or column
Example: Relation Employee is not in 1NF because of multi-valued attribute EMP_PHONE.

 Table: Not in 1NF Before Decomposition Table: 1NF after Decomposition

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385,
9064738238 UP

20 Harry 8574783832

12 Sam 7390372389,
8589830302 Punjab

The decomposition of the Employee table into 1NF has been shown Above:

3. Second Normal Form (2NF): For the 2NF, relational must be in 1NF. In the second normal
form, all non-key attributes are fully functional dependent on the primary key.
Example: Let's assume a Student Table can store the data of student and his project as follow.

Table: In 1NF But not in 2NF

Student_ID Project_ID Student_Name Project_Name

25 P1 John ABC

26 P2 Gems XYZ

47 P3 Harry PQR

83 P4 Sam LMN

25 P5 John STU

In the given table, non-prime attribute Project_Name is dependent on Project_ID as well
Student_ID which is a proper subset of a candidate key, i.e Project_Name can be identified by
Student_ID as well Project_ID. That's why it violates the rule for 2NF. To convert the given
table into 2NF, we decompose it into two tables:

 Table: student_Detail Table: Project_Detail

Student_ID Student_Name

25 John
26 Gems
47 Harry
83 Sam

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385 UP
14 John 9064738238 UP
20 Harry 8574783832 Bihar
12 Sam 7390372389 Punjab
12 Sam 8589830302 Punjab

Project_ID Project_Name

P1 ABC

P2 XYZ

P3 PQR

P4 LMN

P5 STU

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 34

4. Third Normal Form (3NF): A relation will be in 3NF if it is in 2NF and not contain any
transitive partial dependency. 3NF is used to reduce the data duplication. It is also used to
achieve the data integrity. If there is no transitive dependency for non-prime (Non Primary
key) attributes, then the relation must be in third normal form.
If any attribute A,B, & C from your table hold the functional dependency relation like A -> B, A
-> C Then we can conclude that there will be A -> C which is called as transitive dependency, it
violates the rule for 3NF

Example Table: Employee_Detail in 2NF But Not in 3NF

In above table all attributes except EMP_ID are non-prime. Here, EMP_STATE & EMP_CITY
dependent on EMP_ZIP and EMP_ZIP dependent on EMP_ID. The non-prime attributes
(EMP_STATE, EMP_CITY) transitively dependent on super key(EMP_ID). It violates the rule of
third normal form. That's why we need to move the EMP_CITY and EMP_STATE to the new
<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.

 Table: EMPLOYEE in 3NF Table: EMPLOYEE_ZIP in 3NF

EMP_ID EMP_NAME EMP_ZIP

222 Harry 201010
333 Stephan 02228
444 Lan 60007
555 Katharine 06389
666 John 462007

5. Boyce Codd normal form (BCNF): BCNF is the advance version of 3NF. It is stricter than
3NF. A table is in BCNF if every functional dependency X → Y, X is the super key of the table.
For BCNF, the table should be in 3NF, and for every FD, LHS is super key. Should have single
super key. Example: Let's assume there is a company where employees work in more than
one department.

Table EMPLOYEE in 3NF but Not in BCNF

EMP_ID EMP_DEPT DEPT_MEMBER EMP_DEPT_NO
264 Designing 394 283
264 Testing 194 300
364 Stores 583 232
364 Developing 283 549

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY
222 Harry 201010 UP Noida
333 Stephan 02228 US Boston
444 Lan 60007 US Chicago
555 Katharine 06389 UK Norwich
666 John 462007 MP Bhopal

EMP_ZIP EMP_STATE EMP_CITY
201010 UP Noida
02228 US Boston
60007 US Chicago
06389 UK Norwich

462007 MP Bhopal

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 35

In given table it contains two super keys namely EMP_ID and EMP_DEPT_NO which is
violating the rule of BCNF so to convert the given table into BCNF, we decompose it into two
tables:
 Table: EMP_DEPT Table: EMP_DEPT_MAPPING

EMP_DEPT DEPT_MEMBER EMP_DEPT_NO

Designing 394 283

Testing 194 300

Stores 583 232

Developing 283 549

6. Fourth normal form (4NF): A relation will be in 4NF if it is in Boyce Codd normal form
and has no multi-valued dependency. For a dependency A → B, if for a single value of A,
multiple values of B exists, then the relation will be a multi-valued dependency.
Example Table: STUDENT

STU_ID COURSE HOBBY

21 Computer Dancing

21 Math Singing

34 Chemistry Dancing

74 Biology Cricket

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent entity.
Hence, there is no relationship between COURSE and HOBBY. In the STUDENT relation, a
student with STU_ID 21 contains Two courses, Computer and Math and two hobbies
Dancing and Singing. So there is a Multi-valued dependency on STU_ID, which leads to
unnecessary repetition of data. So to make the above table into 4NF, we can decompose it into
two tables:

 Table: STUDENT_COURSE Table: STUDENT_HOBBY

EMP_ID EMP_DEPT

D394 283

D394 300

D283 232

D283 549

STU_ID HOBBY

21 Dancing

21 Singing

34 Dancing

74 Cricket

STU_ID COURSE

 21 Computer

21 Math

34 Chemistry

74 Biology

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 36

7. Fifth normal form (5NF): A relation is in 5NF if it is in 4NF and not contains any join
dependency and joining should be lossless. 5NF is satisfied when all the tables are broken into
as many tables as possible in order to avoid redundancy. 5NF is also known as Project-join
normal form (PJ/NF).
Example

SUBJECT LECTURER SEMESTER

Computer Anshika Semester 1

Computer John Semester 1

Math John Semester 1

Math Akash Semester 2

Chemistry Praveen Semester 1

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't
take Math class for Semester 2. In this case, combination of all these fields required to identify
a valid data. Suppose we add a new Semester as Semester 3 but do not know about the subject
and who will be taking that subject so we leave Lecturer and Subject as NULL. But all three
columns together acts as a primary key, so we can't leave other two columns blank. So to
make the above table into 5NF, we can decompose it into three relations R1, R2 & R3:

 Table: R1. Table: R2. Table: R3.

2.11.1 Purpose of Normalization: Normalization is the aim of well design Relational
Database Management System (RDBMS). It is step by step set of rules by which data is put in
its simplest forms. We normalize the relational database management system because of the
following reasons:

 Minimize data redundancy i.e. no unnecessarily duplication of data.
 To make database structure flexible i.e. it should be possible to add new data values and

rows without reorganizing the database structure.
 Data should be consistent throughout the database i.e. it should not suffer from following

anomalies.

SEMSTER LECTURER

Semester 1 Anshika

Semester 1 John

Semester 1 John

Semester 2 Akash

Semester 1 Praveen

SEMESTER SUBJECT

Semester 1 Computer

Semester 1 Math

Semester 1 Chemistry

Semester 2 Math

SUBJECT LECTURER

Computer Anshika

Computer John

Math John

Math Akash

Chemistry Praveen

Database Management System Unit-2: Constraints & Normalization

Prepared By: Mr. V. K. Wani 37

 Insert Anomaly - Due to lack of data i.e., all the data available for insertion such that null
values in keys should be avoided. This kind of anomaly can seriously damage a database

 Update Anomaly - It is due to data redundancy i.e. multiple occurrences of same values in a
column. This can lead to inefficiency.

 Deletion Anomaly - It leads to loss of data for rows that are not stored else where. It could
result in loss of vital data.

 To Make queries required by the user easy to handle.

The resulting relations (tables) obtained on normalization should possess the properties such
as each row must be identified by a unique key, no repeating groups, homogenous columns,
each column is assigned a unique name etc.

